China high quality Customized Molded Injection Plastic Part for All Kinds of Industry

Product Description

Product: Custom CHINAMFG spare parts for auto

Customized rubber parts are widely used in many areas in our daily life. Rubber products (rubber product) refers to the activities of producing a variety of rubber products with natural and synthetic rubber as raw materials, and also the rubber products produced by the use of waste rubber. The output of synthetic rubber has greatly exceeded that of natural rubber, and the largest yield is styrene butadiene rubber.
 Customized rubber products are made from rubber raw materials made from refiners, and they are designed according to the properties of the rubber products required, and the required hardness of the products is determined. The molding process is moulded by rubber plate vulcanizing machine. Finally, the product is processed by flash processing to smooth the surface of the product without burrs.
Product Details:

Materials: Nitrile rubber(NBR), Viton rubber(FKM), Silicone rubber, EPDM, Natural ruber.
Other Names: Auto rubber parts, rubber seal strips, rubber sealing, oil seals, rubber shock absorber.
Hardness: Shore A 50 -85
Operating temperature: -30 – 200 °C
Color: Red, Green, Blue, White, Black,Grey
Application: Custom CHINAMFG spare parts are used for pressure cooker, home appliance, autos, trucks, air-conditioners and etc.

The different material of rubber mounting will cause different property.
EPDM/NBR/silicone/SBR/PP/PVC etc.

Items EPDM NR silicone PVC
Hardness
(Sha)
30~85 30~90 20~85 50~95
Tensile strength
(Mpa)
≥8.5MPa > 20 Mpa 3~8 10~50
Elongation(%) 200~550 1000% 200~800 200~600
Specific Gravity 0.75-1.6 1.15-1.21 1.25~1.35 1.3~1.7
Temperature range -40~+120°C -50~70ºC. -55~+350°C -29°C – 65.5°C

1. the property of NR
 It has good wear resistance, high elasticity, breaking strength and elongation, But in the air, it is easy to get age, and it is get sticky when it get in touch with heat, which is easy to expand and dissolve in mineral oil or gasoline, but it is resistant to strong acid, but not to Alkali . working temperature is -50~70ºC.
2. the property of EPDM
Weather ability, aging resistance, CHINAMFG resistance, chemical stability are excellent, and CFCS and a variety of refrigerants. Working temperature is -50~150
3. the property of silicone
It has excellent heat resistance, cold resistance, CHINAMFG resistance and atmospheric aging resistant.Good electrical insulation performance,The tensile strength and wear resistance are generally poor and has non- oil resistant. The working temperature is -55~250ºC
4. The property of NBR
Good oil resistance, heat resistance, abrasion resistance, solvent resistance and high – pressure oil,But it is not suitable for CHINAMFG solvents, such as ketones, ozone, nitro-hydrocarbons, and chloroform. The working temperature is -40~120 ºC
5. the property of CR
It has good elasticity, wear resistance and atmospheric aging resistance. It is not afraid of violent distortion and flammability.Chemical stability. The working temperature is -40~100 ºC
6. The property of FKM
Excellent high temperature resistance,And have excellent chemical resistance, most oil and solvent (other than ketones and esters).cold resistance is not good.

The advantage of our company

  1. We have complete production line with advanced production and test equipment..Adding First-class technicians, so that we can  offer you the competitive price and high quality ,fast delivery time
  2. We have a special drawing design department to design the correct drawing data meeting your requirements. Then, we will use CAD or other format drawing to carry on tracking the production of tooling, sample ,mass goods. To avoid something wrong to each process. To make sure all of dimension are correct.
  3. We also has special production supervision department. The engineer staff will Supervise  each process from the manufacture of tooling to the production of mass goods.
    Reduce something wrong happened, finally offer you parts meeting your technology requirement.
  4. All of Raw material are past quality certification,In the meantime, we will first delivery test report of rubber part when all of mass goods are finished. And make sure the quality meet your requirement, then make shipment.  
  5. Package and shipment

  6. Two part is packaged with 1 plastic bag, then certain quantity of rubber bellow seal are put into carton box.
  7. Carton box insider rubber bellow seal is with packing list detail. Such as, item name, the type number of rubber bellow seal, quantity of rubber bellow seal, gross weight,net weight, dimension of carton box,etc
  8. All of carton box will be put on 1 non-fumigation pallet, then all carton boxes will be wrapped by film.

    4.We have our own forwarder which has Rich experience in delivery arrangement to optimize the most                 economic   and quickest shipping way, SEA,  AIR,  DHL, UPS ,FEDEX, TNT , etc.

Why choose us?
1.Product: we specialize in rubber molding,injection and extruded rubber profile.
   And complete advanced production equipment and test equipment
2.High quality:100% of the national standard has been no product quality complaints
the materials are environmentally friendly and the technology reaches the international advanced level
3.The competitive price:we have own factory, and the price is directly from factory. In additional,perfect advanced production equipment and enough staff. So the price is the best.
4.Quantity :Small quantity is available
5.Tooling:Developing tooling according to drawing or sample, and solve all of questions
6.Package: all of package meet standard internal export package, carton outside, inside plastic bag for each part; as your requirement
7.Transport:We have our own freight forwarder which can guarantee our goods can be delivered safely and promptly by sea or air
8.Stock and delivery:Standard specification,lots of stocks, and fast delivery
10. Service:Excellent service after-sales

Common Questions

  1. What is the minimum order quantity for your rubber products?

Answer:We didn’t set the minimum order quantity,1~10pcs some client has ordered.

  1. If we can get sample of rubber product from you?

 Answer:Of course, you can. Feel free to contact me about it if you need it.

  1. Do we need to charge for customizing our own products? And if it is necessary to make tooling?

Answer: if we have the same or similar rubber part, at the same time, you satisfy it.
 Well, you don’t need to open tooling
New rubber part, you will charge tooling according to the cost of tooling.
In additional,if the cost of tooling is more than 1000 USD, we will return all of them to you in the future when purchasing order quantity reach certain quantity our company rule

  1. How long you will get sample of rubber part?

Answer: Usually it is up to complexity degree of rubber part. Usually it take 7 to 10work 
days.

  1. How many your company product rubber parts?

 Answer:It is up to the size of tooling and the quantity of cavity of tooling. If rubber part is more complicate and much bigger, well maybe just make few, but if rubber part is small and simple, the quantity is more than 200,000pcs.

  1. Silicone part meet environment standard?

Answer:Our silicone part are all high grade 100% pure silicone material. We can offer you certification ROHS and SGS, FDA .Many of our products are exported to European and American countries. Such as: Straw, rubber diaphragm, food mechanical rubber, etc.
 

 

Transport Package: Carton
Specification: customize
Trademark: WL
Origin: China
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

What industries and applications commonly utilize injection molded parts?

Injection molded parts find widespread use across various industries and applications due to their versatility, cost-effectiveness, and ability to meet specific design requirements. Here’s a detailed explanation of the industries and applications that commonly utilize injection molded parts:

1. Automotive Industry:

The automotive industry extensively relies on injection molded parts for both interior and exterior components. These parts include dashboards, door panels, bumpers, grilles, interior trim, seating components, electrical connectors, and various engine and transmission components. Injection molding enables the production of lightweight, durable, and aesthetically pleasing parts that meet the stringent requirements of the automotive industry.

2. Consumer Electronics:

Injection molded parts are prevalent in the consumer electronics industry. They are used in the manufacturing of components such as housings, buttons, bezels, connectors, and structural parts for smartphones, tablets, laptops, gaming consoles, televisions, cameras, and other electronic devices. Injection molding allows for the production of parts with precise dimensions, excellent surface finish, and the ability to integrate features like snap fits, hinges, and internal structures.

3. Medical and Healthcare:

The medical and healthcare industry extensively utilizes injection molded parts for a wide range of devices and equipment. These include components for medical devices, diagnostic equipment, surgical instruments, drug delivery systems, laboratory equipment, and disposable medical products. Injection molding offers the advantage of producing sterile, biocompatible, and precise parts with tight tolerances, ensuring safety and reliability in medical applications.

4. Packaging and Containers:

Injection molded parts are commonly used in the packaging and container industry. These parts include caps, closures, bottles, jars, tubs, trays, and various packaging components. Injection molding allows for the production of lightweight, durable, and visually appealing packaging solutions. The process enables the integration of features such as tamper-evident seals, hinges, and snap closures, contributing to the functionality and convenience of packaging products.

5. Aerospace and Defense:

The aerospace and defense industries utilize injection molded parts for a variety of applications. These include components for aircraft interiors, cockpit controls, avionics, missile systems, satellite components, and military equipment. Injection molding offers the advantage of producing lightweight, high-strength parts with complex geometries, meeting the stringent requirements of the aerospace and defense sectors.

6. Industrial Equipment:

Injection molded parts are widely used in industrial equipment for various applications. These include components for machinery, tools, pumps, valves, electrical enclosures, connectors, and fluid handling systems. Injection molding provides the ability to manufacture parts with excellent dimensional accuracy, durability, and resistance to chemicals, oils, and other harsh industrial environments.

7. Furniture and Appliances:

The furniture and appliance industries utilize injection molded parts for various components. These include handles, knobs, buttons, hinges, decorative elements, and structural parts for furniture, kitchen appliances, household appliances, and white goods. Injection molding enables the production of parts with aesthetic appeal, functional design, and the ability to withstand regular use and environmental conditions.

8. Toys and Recreational Products:

Injection molded parts are commonly found in the toy and recreational product industry. They are used in the manufacturing of plastic toys, games, puzzles, sporting goods, outdoor equipment, and playground components. Injection molding allows for the production of colorful, durable, and safe parts that meet the specific requirements of these products.

9. Electrical and Electronics:

Injection molded parts are widely used in the electrical and electronics industry. They are employed in the production of electrical connectors, switches, sockets, wiring harness components, enclosures, and other electrical and electronic devices. Injection molding offers the advantage of producing parts with excellent dimensional accuracy, electrical insulation properties, and the ability to integrate complex features.

10. Plumbing and Pipe Fittings:

The plumbing and pipe fittings industry relies on injection molded parts for various components. These include fittings, valves, connectors, couplings, and other plumbing system components. Injection molding provides the ability to manufacture parts with precise dimensions, chemical resistance, and robustness, ensuring leak-free connections and long-term performance.

In summary, injection molded parts are utilized in a wide range of industries and applications. The automotive, consumer electronics, medical and healthcare, packaging, aerospace and defense, industrial equipment, furniture and appliances, toys and recreational products, electrical and electronics, and plumbing industries commonly rely on injection molding for the production of high-quality, cost-effective, and functionally optimized parts.

China high quality Customized Molded Injection Plastic Part for All Kinds of Industry  China high quality Customized Molded Injection Plastic Part for All Kinds of Industry
editor by CX 2023-11-22